CHAPTER

Vector Algebra

Important Definitions

- * **Representation of Vectors:** A vector \vec{a} is represented by the directed line segment \overrightarrow{AB} . The magnitude of the vector \vec{a} is equal to \overrightarrow{AB} , and the direction of the vector \vec{a} is along the line from *A* to *B*.
- Scalar Quantity: A quantity that has only magnitude and is not related to any direction is called a scalar quantity.
- Vector Quantity: A quantity that has magnitude and also a direction in space is called a vector quantity.
- * Null Vector or Zero Vector: If the initial and terminal points of a vector coincide, then it is called a zero vector. It is denoted by $\vec{0}$ or *O*. Its magnitude is zero and direction indeterminate.
- * Unit Vector: A vector whose magnitude is of unit length along my vector \vec{a} is called a unit vector in the direction of \vec{a} and is denoted by \hat{a}
- Equal Vector: Two non-zero vectors are said to be equal vectors if their magnitude is equal and directions are the same.
- Collinear Vector: Two or more non-zero vectors are said to be collinear vectors if they are parallel to the same line.
- Like and Unlike Vector: Collinear vectors having the same direction are known as like vectors, while those having opposite directions are known as, unlike vectors.
- Coplanar Vector: Two or more non-zero vectors are said to be coplanar vectors if these are parallel to the same plane.
- Localised Vector and Free Vector: A vector drawn parallel to a given vector through a specified point as the initial point, is known as a localised vector. If the initial point of a vector is not specified, it is said to be a free vector.
- * **Position Vector:** Let *O* be the origin and *A* be a point such that $\overrightarrow{OA} = \vec{a}$, then we say that the position vector of *A* is \vec{a} .

Negative of a Vector

* Let \overrightarrow{AB} be a vector directed from A to B. then $-\overrightarrow{AB}$ is a vector which would be directed from B to A.

Coinitial Vectors

24

Two vectors are said to be coinitial vectors if both the vectors have the same initial points.

Co-terminal Vectors

Two vectors are said to be Co-terminal vectors if both the vectors have the same terminating point.

Algebra of vectors

Addition of Vectors Triangle Law

Result: $\vec{a} + \vec{b} = \vec{c}$ or $\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$ Converse of triangle law is also true.

Parallelogram Law

Result: $\vec{a} + \vec{b} = \vec{c}$ or $\overrightarrow{OA} + \overrightarrow{OB} = \overrightarrow{OC}$

Properties of vector addition:

- (*i*) \vec{a} \vec{b} \vec{b} \vec{a} (commutative)
- (*ii*) $(\vec{a} + \vec{b}) + \vec{c} = \vec{a} + (\vec{b} + \vec{c})$ (associative)
- (*iii*) $\vec{a} + \vec{0} = \vec{a} = \vec{0} + \vec{a}$
- (*iv*) $\vec{a} + (-\vec{a}) = \vec{0} = (-\vec{a}) + \vec{a}$
- (v) $|\vec{a} + \vec{b}| \le |\vec{a}| + |\vec{b}|$
- (*vi*) $|\vec{a} \vec{b}| \ge ||\vec{a}| |\vec{b}||$

Multiplication of Vector by Scalars

If \vec{a} and \vec{b} are vectors & m, n are scalars, then

- (i) $m(\vec{a}) = (\vec{a})m = m\vec{a}$
- (*ii*) $m(n\vec{a}) = n(m\vec{a}) = (mn)\vec{a}$
- (*iii*) $(m+n)\vec{a} = m\vec{a} + n\vec{a}$
- (*iv*) $m(\vec{a}+\vec{b}) = m\vec{a}+m\vec{b}$
- JEE (XII) Module-4

Subtraction of Vectors

In the given diagram \vec{a} and \vec{b} are represented by \overline{OA} and \overline{AB} . We extend the line AB in opposite direction upto C, where AB = AC. The line segment \overline{AC} will represent the vector $-\vec{b}$. By joining the points O and C, the vector represented by \overline{OC} is $\vec{a} + (-\vec{b})$. i.e., denotes the vector $\vec{a} - \vec{b}$.

Note:

- (*i*) $\vec{a} \vec{a} = \vec{a} + (-\vec{a}) = \vec{0}$
- (*ii*) $\vec{a} \vec{b} \neq \vec{b} \vec{a}$

Hence subtraction of vectors does not obey the commutative law.

(*iii*) $\vec{a} - (\vec{b} - \vec{c}) \neq (\vec{a} - \vec{b}) - \vec{c}$

i.e. subtaction of vectors does not obey the associative law.

Important Properties and Formulae

- * If $\vec{r}_1 = x_1\hat{i} + y_1\hat{j} + z_1\hat{k}$ and $\vec{r}_2 = x_2\hat{i} + y_2\hat{j} + z_2\hat{k}$ then $\vec{r}_1 + \vec{r}_2 = (x_1 + x_2)\hat{i} + (y_1 + y_2)\hat{j} + (z_1 + z_2)\hat{k}$ and $\vec{r}_1 = \vec{r}_2$ $\Leftrightarrow x_1 = x_2, y_1 = y_2, z_1 = z_2.$
- * \vec{a} and \vec{b} are parallel or collinear if $\vec{a} = m\vec{b}$ and only if for some non-zero scalar *m*.
- $\mathbf{\hat{a}} = \frac{\vec{a}}{|\vec{a}|} \text{ or } \vec{a} = |\vec{a}| \hat{a}$
- * $\vec{r}, \vec{a}, \vec{b}$ are coplanar if and only if $\vec{r} = x\vec{a} + y\vec{b}$ for some scalars *x* and *y*.
- * If the position vectors of the points A and B be \vec{a} and \vec{b} then, the position vectors of the points dividing the line AB $\vec{mb} + n\vec{a}$

in the ratio m: *n* internally and externally are $\frac{m\vec{b} + n\vec{a}}{m+n}$ and $\frac{m\vec{b} - n\vec{a}}{m-n}$, respectively.

- If $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$ then $|\vec{r}| = \sqrt{x^2 + y^2 + z^2}$
- * Given vectors $x_1\vec{a} + y_1\vec{b} + z_1\vec{c}$, $x_2\vec{a} + y_2\vec{b} + z_2\vec{c}$, $x_3\vec{a} + y_3\vec{b} + z_3\vec{c}$, where $\vec{a}, \vec{b}, \vec{c}$ are non-coplanar vectors,

will be coplanar if and only if $\begin{vmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \end{vmatrix} = 0$

- $\ \ \, \bullet \ \ \, |\vec{a}+\vec{b}| \leq |\vec{a}|+|\vec{b}|$
- $\diamond |\vec{a} \vec{b}| \ge |\vec{a}| |\vec{b}|$

Scalar Product or Dot Product

- * $\vec{a} \cdot \vec{b} = |a| \cdot |b| \cos \theta$, where $0 \le \theta \le \pi$
- * If $\vec{a} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}$ and $\vec{b} = b_1\hat{i} + b_2\hat{j} + b_3\hat{k}$ then $\vec{a}.\vec{b} = a_1b_1 + a_2b_2 + a_3b_3$
- If \vec{a} and \vec{b} are the non-zero vectors, then $\vec{a} \cdot \vec{b} = 0 \Leftrightarrow \vec{a} \perp \vec{b}$

•
$$\cos \theta = \left| \frac{\vec{a} \cdot \vec{b}}{||\vec{a}|||\vec{b}||} \right|$$
 where θ is the acute angle made by \vec{a} with \vec{b}

• Projection of
$$\vec{b}$$
 along $\vec{a} = \frac{b \cdot a}{|\vec{a}|}$

- * Component of a vector \vec{r} in the direction of \vec{a} and perpendicular to \vec{a} are $\left(\frac{\vec{r}\cdot\vec{a}}{|\vec{a}|^2}\right)\vec{a}$ and $\vec{r} - \left\{\frac{(\vec{r}\cdot\vec{a})}{|\vec{a}|^2}\right\}\vec{a}$ respectively.
- * $\hat{i}.\hat{i} = \hat{j}.\hat{j} = \hat{k}.\hat{k} = 1$ and $\hat{i}.\hat{j} = \hat{j}.\hat{i} = \hat{j}.\hat{k} = \hat{k}.\hat{i} = \hat{i}.\hat{k} = 0$

Vector Product

- * The product of vectors \vec{a} and \vec{b} and is denoted by $\vec{a} \times \vec{b} = (|\vec{a}| |\vec{b}| \sin \theta)\hat{n}$
- $\ \, \bullet \ \ \, \vec{a} \times \vec{b} = -\vec{b} \times \vec{a}$
- If $\vec{a} = \vec{b}$ or if \vec{a} is parallel to \vec{b} , then $\sin \theta = 0$ and so $\vec{a} \times \vec{b} = 0$
- Distributive laws: $\vec{a} \times (\vec{b} + \vec{c}) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c}$ and $(\vec{b} + \vec{c}) \times \vec{a} = \vec{b} \times \vec{a} + \vec{c} \times \vec{a}$

• If
$$a = a_1 j + a_2 j + a_3 k$$
 and $b = b_1 i + b_2 j + b_3 k$ then
(*i*) $\vec{a} \times \vec{b} = (a_2 b_3 - a_3 b_2)\hat{i} + (a_3 b_1 - a_1 b_3)\hat{j} + (a_1 b_2 - a_2 b_1)\hat{k}$
(*ii*) $\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$

- If two vectors \vec{a} and \vec{b} are parallel, then $\theta = 0$ or π i.e. sin $\theta = 0$ in both cases.
- Two vectors \vec{a} and \vec{b} are parallel if their corresponding components are proportional.
- * Area of the triangle $ABC = \frac{1}{2} | \overrightarrow{AB} \times \overrightarrow{AC} |$ $\hat{i} \times \hat{i} = \hat{j} \times \hat{j} = \hat{k} \times \hat{k} = \vec{0}, \hat{i} \times \hat{j} = \hat{k}, \hat{j} \times \hat{k} = \hat{i}, \hat{k} \times \hat{i} = \hat{j}$
- * Unit vector perpendicular to the plane of \vec{a} and \vec{b} is

$$\hat{n} = \pm \frac{\vec{a} \times \vec{b}}{\mid \vec{a} \times \vec{b} \mid}$$

• If θ is the angle between \vec{a} and \vec{b} , then $\sin \theta = \frac{\vec{a} \times \vec{b}}{|\vec{a}||\vec{b}|}$

25

Scalar Triple Product

- * If $\vec{a} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}$, $\vec{b} = b_1\hat{i} + b_2\hat{j} + b_3\hat{k}$ and $\vec{c} = c_1i + c_2j + c_3k$, then $(\vec{a} \times \vec{b}) \cdot \vec{c} = [\vec{a} \ \vec{b} \ \vec{c}] = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$.
- $\quad \ \ [\vec{a} \ \vec{b} \ \vec{c}] = [\vec{b} \ \vec{c} \ \vec{a}] = [\vec{c} \ \vec{b} \ \vec{a}] \text{ but } [\vec{a} \ \vec{b} \ \vec{c}] = -[\vec{a} \ \vec{c} \ \vec{b}] \text{ etc.}$
- If any two of the vectors $\vec{a}, \vec{b}, \vec{c}$ are equal, then $[\vec{a} \ \vec{b} \ \vec{c}] = 0$.
- The position of dot and cross in a scalar triple product can be interchanged. Hence, $(\vec{a} \times \vec{b}) \cdot \vec{c} = \vec{a} \cdot (\vec{b} \times \vec{c})$
- The value of a scalar triple product is zero if two of its vectors are parallel.
- * $\vec{a}, \vec{b}, \vec{c}$ are coplanar if and only if $[\vec{a} \ \vec{b} \ \vec{c}] = 0$.
- Volume of the parallelepiped whose coterminous edges are formed by $\vec{a}, \vec{b}, \vec{c} = [\vec{a} \ \vec{b} \ \vec{c}].$
- * Volume of a tetrahedron with three coterminous edges

$$\vec{a}, \vec{b}, \vec{c} = \frac{1}{6} \left| \left[\vec{a} \ \vec{b} \ \vec{c} \right] \right|$$

• Volume of prism on a triangular base with three coterminous $\vec{r} = \vec{r} + \vec{l} + \vec{r} = \vec{l}$

edges $\vec{a}, \vec{b}, \vec{c} = \frac{1}{2} \left| \left[\vec{a} \ \vec{b} \ \vec{c} \right] \right|.$

- * In particular $\hat{i}.(\hat{j} \times \hat{k}) = 1$ $[\hat{i} \ \hat{j} \ \hat{k}] = 1$
- $\quad \& \ [K \ \vec{a} \ \vec{b} \ \vec{c}] = K[\vec{a} \ \vec{b} \ \vec{c}]$
- * $[(\vec{a} + \vec{b}) \, \vec{c} \, \vec{d}] = [\vec{a} \, \vec{c} \, \vec{d}] + [\vec{b} \, \vec{c} \, \vec{d}]$
- * $[\vec{a} \vec{b} \ \vec{b} \vec{c} \ \vec{c} \vec{a}] = 0$ and $[\vec{a} + \vec{b} \ \vec{b} + \vec{c} \ \vec{c} + \vec{a}] = 2[\vec{a} \ \vec{b} \ \vec{c}]$
- $\mathbf{*} \quad [\vec{a} \ \vec{b} \ \vec{c}]^{2} = \begin{vmatrix} \vec{a} & \vec{a} & \vec{a} & \vec{b} & \vec{a} & \vec{c} \\ \vec{b} & \vec{a} & \vec{b} & \vec{b} & \vec{b} & \vec{c} \\ \vec{c} & \vec{a} & \vec{c} & \vec{b} & \vec{c} & \vec{c} \end{vmatrix} = [\vec{a} \times \vec{b} \ \vec{b} \times \vec{c} \ \vec{c} \times \vec{a}]$

Vector Triple Product

- * If $\vec{a}, \vec{b}, \vec{c}$ be any three vectors, then $(\vec{a} \times \vec{b}) \times \vec{c}$ and $\vec{a} \times (\vec{b} \times \vec{c})$ are known as vector triple product.
- * $\vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \cdot \vec{c}) \vec{b} (\vec{a} \cdot \vec{b}) \vec{c}$ and $(\vec{a} \times \vec{b}) \times \vec{c} = (\vec{a} \cdot \vec{c}) \vec{b} (\vec{b} \cdot \vec{c}) \vec{a}$

- * $\vec{a} \times (\vec{b} \times \vec{c})$ is a vector in the plane of vectors \vec{b} and \vec{c} .
- The vector triple product is not commutative i.e., $\vec{a} \times (\vec{b} \times \vec{c}) \neq (\vec{a} \times \vec{b}) \times \vec{c}$
- * Lagrange's identity: $(\vec{a} \times \vec{b}) \cdot (\vec{c} \times \vec{d}) = \begin{vmatrix} \vec{a} \cdot \vec{c} & \vec{a} \cdot \vec{d} \\ \vec{b} \cdot \vec{c} & \vec{b} \cdot \vec{d} \end{vmatrix}$

$$= (a . c)(b . d) - (a . d)(b . c)$$

 $(\vec{a} \times \vec{b}) \times (\vec{c} \times \vec{d}) = [\vec{a} \ \vec{b} \ \vec{d}] \vec{c} - [\vec{a} \ \vec{b} \ \vec{c}] \vec{d}$ $= [\vec{c} \ \vec{d} \ \vec{a}] \vec{b} - [\vec{c} \ \vec{d} \ \vec{b}] \vec{a}$

Distance between Lines

(*i*) If two parallel lines are given by

 $\vec{r_1} = \vec{a_1} + K\vec{b}$ and $\vec{r_2} = \vec{a_2} + K\vec{b}$, then distance (d) between them is given by

$$d = \left| \frac{\vec{b} \times (\vec{a}_2 - \vec{a}_1)}{|\vec{b}|} \right|$$

Shortest Distance = $\left| \frac{\vec{AB} \cdot (\vec{p} \times \vec{q})}{|\vec{p} \times \vec{q}|} \right| = \left| \frac{(\vec{b} - \vec{a}) \cdot (\vec{p} \times \vec{q})}{|\vec{p} \times \vec{q}|} \right|$

The two lines directed along \vec{p} and \vec{q} will intersect only if shortest distance = 0.

Reciprocal System of Vectors

★ If $\vec{a}, \vec{b}, \vec{c}$ be any three non-coplanar vectors so that $[\vec{a} \ \vec{b} \ \vec{c}] \neq 0$ then the three vectors $\vec{a'}, \vec{b'}, \vec{c'}$ defined by the

equations $\vec{a}' = \frac{\vec{b} \times \vec{c}}{[\vec{a} \ \vec{b} \ \vec{c}]}, \vec{b}' = \frac{\vec{c} \times \vec{a}}{[\vec{a} \ \vec{b} \ \vec{c}]}, \vec{c}' = \frac{\vec{a} \times \vec{b}}{[\vec{a} \ \vec{b} \ \vec{c}]}$ are called

the reciprocal system of vectors to the given vectors $\vec{a}, \vec{b}, \vec{c}$.

- * Properties of Reciprocal system of vectors:
 - (i) $\vec{a} \cdot \vec{a}' = \vec{b} \cdot \vec{b}' = \vec{c} \cdot \vec{c}' = 1$
 - (*ii*) $[\vec{a} \ \vec{b} \ \vec{c}][\vec{a} \ \vec{b} \ \vec{c}] = 1$
 - (*iii*) $\vec{i}' = \vec{i}, \ \vec{j}' = \vec{j}, \ \vec{k}' = \vec{k}$
 - (*iv*) If $\{\vec{a}', \vec{b}', \vec{c}'\}$ is reciprocal system of $\{\vec{a}, \vec{b}, \vec{c}\}$ and \vec{r} is any vector, then

$$\vec{r} = (\vec{r}.\vec{a})\vec{a}' + (\vec{r}.\vec{b})\vec{b}' + (\vec{r}.\vec{c})\vec{c}'$$
$$\vec{r} = (\vec{r}.\vec{a}')\vec{a} + (\vec{r}.\vec{b}')\vec{b} + (\vec{r}.\vec{c}')\vec{c}$$

